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Kramers’ model for the rate of chemical reaction is generalized to explain the phenomena of dispersed
kinetics and dynamic disorder in biochemical reactions, by incorporating the newly observed power-law
friction kernel into the generalized Langevin equation for a one-dimensional reaction ordinate. This new model
accounts for time scale overlap between conformational and chemical dynamics, and quantitatively describes
the multi-exponential kinetics and memory effects of fluctuating rate constants, which have been revealed by
recent single-molecule experiments.
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Proteins are complex systems with many degrees of free-
dom and motions on a wide range of time scales, hence their
biological reactions often exhibit dispersed kinetics and dy-
namic disorder �1�. Dispersed kinetics refers to multi-
exponential behaviors associated with heterogeneity, as was
revealed in ensemble studies by Frauenfelder and coworkers
on rebinding of CO to hemeproteins upon photodissociation
�2�. Dynamic disorder refers to fluctuations of rate constants,
which were inferred from ensemble studies �2� and have
been directly observed by recent single molecule experi-
ments �3�. In particular, enzymatic rate constants of single
molecules are found to exhibit large-amplitude fluctuations
over a broad range of time scales �10−3 to 10 s� �3�. Mean-
while, conformation fluctuations within a single protein have
been recently observed at time scales comparable to and
slower than the reaction time scale, which can be described
well by a generalized Langevin equation �GLE� with a power
law friction kernel �4,5�. However, the underlying connec-
tion between fluctuations in protein conformation and those
in reaction rate constants, which coincide in time scales, is
not well understood. Here we theoretically address the effect
of conformational fluctuations on dispersed kinetics and dy-
namic disorder of biochemical reactions.

Dispersed kinetics and dynamic disorder has been the
subject of intensive theoretical investigations �6–8�. Zwanzig
discussed two approaches in his comprehensive review �7�.
The first approach assumes the fluctuating rate constant is
phenomenologically dependent on a time-varying control pa-
rameter, such as the activation barrier height �6� or the area
of the bottleneck �7�. Although this approach is conceptually
straightforward, the control parameters are usually not ex-
perimentally accessible. As a result, their dynamics is often
assumed empirically on an ad hoc basis, for example,
Brownian motion governed by Langevin dynamics. The sec-
ond one assumes a kinetic scheme involving multiple dis-
crete conformational states with different rate constants.
However, there is often no sufficient information about the
kinetic parameters or the connection topology among the

multiple states �9�. Here we seek for an alternative reaction
rate theory based on a GLE.

Recent experiments on equilibrium conformational fluc-
tuations within single protein molecules, such as fluorescein
antibody �4� and flavin reductase �5�, showed that the dis-
tance fluctuation between an electron donor and an acceptor
is a Gaussian non-Markovian process, which can be well
described by one-dimensional GLE �10�:
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where x�t� is the donor acceptor separation, m is the reduced
mass moving in a potential of mean force U�x�, and F�t� is
the random fluctuating force originating from bath thermal
motion. Friction kernel K�t� is related to F�t� by fluctuation-
dissipation theorem

�F�t�F���� = kBT�K�t − �� . �2�

The friction constant, �, reflects the interaction strength be-
tween system and bath �10�.

For equilibrium fluctuation �4,5�, U�x� was often deter-
mined to be a harmonic potential, F�t� is proved to be a
Gaussian noise, and K�t� is determined to be a power law
decay over at least four decades of timescales �10−3 to 10 s�,

K�t − �� = 0.75�t − ��−0.5 �3�

This friction kernel has been observed for two different sys-
tems, fluorescein antibody �4� and flavin reductase �5� from
sub-milliseconds to tens of seconds. A similar power-law
kernel has also been inferred from MD simulations on
lysozyme around a nanosecond time scale �11�. The micro-
scopic origin has been investigated theoretically in terms of
polymer dynamics �12��a� and the fractal nature of protein
�12��b�, respectively. All these studies have suggested the
power law friction kernel could be a general description for
protein dynamics for a wide range of time scales. Our
premise is that the same friction kernel might hold for the
reaction coordinate in Kramers’ model for protein reactions.

The celebrated Kramers’ theory models chemical reaction
as thermally activated crossing of a barrier �13�. Specifically,
U�x� was assumed to be an inverted parabola connecting
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harmonic wells, and F�t� to be white noise with a delta func-
tion K�t�. As an important extension, Grote and Hynes em-
ployed a GLE for the Kramers problem, in which F�t� is
treated as colored noise, reflecting a realistic bath with finite
relaxation times �14�. However, because a clear separation of
time scales is assumed at the onset, namely, the relaxation of
the reaction coordinate is always fast compared to the reac-
tion time scale �15�, both Kramers and Grote-Hynes theories
give a well-defined rate constant, and therefore cannot ac-
count for dispersed kinetics or dynamic disorder. Such a
clear separation of time scale is no longer true for proteins,
which are sluggish systems as demonstrated by the fluctua-
tion observed at the slow and broad range of time scales
�4,5�.

In this Rapid Communication, we provide a quantitative
model for dispersed kinetics and dynamic disorder in the
framework of barrier crossing dynamics. To do so, we incor-
porate the power law friction kernel, Eq. �3�, into Eq. �1�,
and take U�x� to be an inverted parabola connecting two
harmonic wells, Fig. 2�a�. Note that the barrier height does
not fluctuate with time, which is different from the theory
assuming the barrier height as a fluctuating control parameter
�6�. Instead, the fluctuation is introduced into F�t� in a self-
consistent way, satisfying the fluctuation dissipation theorem.

This model offers several appealing features. First, the use
of GLE formalism is based on the Hamiltonian of the
system-bath interaction, rather than ad hoc assumptions. Sec-
ondly, a one-dimensional description, though simple, makes
the complex many-body problem tractable. Thirdly, com-
pared with Kramers’ theory, the description only introduces
one more parameter: the power law friction kernel.

We carry out stochastic simulations using a sampling
algorithm for F�t� based on a circulant matrix method
that was designed for the simulation of fractional Gaussian
noise, which has a characteristic power law autocorrelation
function �16�. As a check on the sampling algorithm,
�F�t�F���� is computed from a simulated F�t� trace, and is in
good agreement with t−1/2, as shown in Fig. 1�a�. With the
simulated F�t� trace, the GLE is readily integrated in time to
give the progression of dynamics using standard algorithms.
m=1, kBT=1, and all the times are given in units of 1 /�a.
The integration step size has been chosen to be 0.1 time units
for stability reasons. In the overdamped limit where accel-
eration can be neglected, Eq. �1� reduces to

dU�x�t��
dx

= − �
0

t

d�M�t − ��
dx���

d�
+ F�t� �4�

To validate the GLE simulation, we compute x�t� dynam-
ics within a harmonic well �without the inverted parabola�
using Eq. �4� and then compare the simulation with the ana-
lytical result derived in Ref. �4�:

Cx�t� 	 �x�0�x�t�� = �kBT/m�a
2�et/t0erfc�
t/t0� �5�

where t0	���5/2�� /m�a
2�2 is a characteristic time scale of

the system, and � is the gamma function, erfc is the comple-
mentary error function. As shown in Fig. 1�b�, the simulated
Cx�t� agrees well with Eq. �5� ��=1 and t0=1.8�, proving the
validity of our simulation. It is important to note that, though

the fluctuation of x�t� spans over multiple time scales, it is
roughly controlled by t0 through Eq. �5�. The stronger the
system-bath coupling strength �, the slower the x�t� relaxes,
for fixed m�a

2.
We now set out to simulate dispersed kinetics and dy-

namic disorder, which is often manifested in the waiting time
distribution and the correlation function of waiting times in
an enzymatic turnover time trace. Single molecule experi-
ments showed that the former exhibits multi-exponential de-
cay, and the latter fluctuates over a broad range of time
scales, displaying a strong “memory effect” �3�.

We first calculate the waiting time distribution f�t� for
barrier crossing in the double well potential, which has a
barrier height Ea, well frequency �a, and barrier frequency
�b ��b=1�, shown in Fig. 2�a�. The initial conditions of x are
drawn from Boltzmann distribution. As the trajectory is
propagated from the reactant well, a waiting time is recorded
when x�t� crosses over the bottom of the product well. 10
000 independent trajectories were sampled to give a smooth
f�t� distribution. The simulation was done for not too large
Ea=2kBT, with which sufficient events of barrier crossing
can be achieved with reasonable computational efforts.

As shown in Fig. 2�b�, f�t� is monoexponential for small
coupling strength. This corresponds to a well defined rate
constant described in Kramers-Grote-Hynes theory. How-
ever, f�t� becomes multi-exponential at large coupling

FIG. 1. �Color online� �a� Autocorrelation function �F�t�F�0��
�open circle� of F�t� simulated by the circulant matrix method
described in Ref. �16�, overlaid with a power law decay t−1/2 �solid
curve in red�. �b� Cx�t� �open circle� calculated from a simulated
x�t� trajectory undergoing diffusion in a harmonic potential with
�=1, overlaid with Cx�t�= �kBT /m�a

2�et/t0 erfc�
t / t0� �solid curve in
red� with t0	���5/2�� /m�a

2�2=1.8. The good agreement with the
analytical expression proves the reliability of the GLE simulation.
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strength, indicating dispersed kinetics. Specifically, the
reaction time scale �R is calculated from the first moment
of f�t� , �R	�0

�tf�t�dt , �R�3, 4, and 10 for �=0.08, 0.3
and 1.0, respectively. Meanwhile, as discussed before,
t0	 (��5/2�� /m�a

2)2 roughly sets the system’s characteristic
time scale, t0=0.01, 0.07, and 1.8 for �=0.08, 0.3, and 1.0,
respectively. It is evident from Fig. 2�b� that a clear time
scale separation t0��R results in single exponential f�t�,
while time scale overlap t0��R leads to multiexponential
f�t�, the signature of dispersed kinetics.

To highlight the lack of time-scale separation, we
calculate time-dependent transmission coefficient ��t� ac-
cording to the reactive flux formalism �17�, which samples
reaction events by starting trajectories directly on the top of
the barrier:

��t� =
�	„x�0� − x�

…ẋ�0�
„x�t� − x�
…��

�	„x�0� − x�
…ẋ�0�
„x�0� − x�

…��

�6�

where �¯�� specifies an average with x constrained to the
transition state x�, and 
�x�t�−x�� is a step function that
equals 1 when x�t��x� and is 0 otherwise. Eq. �6� is based
on Onsager’s regression hypothesis, which is always true
regardless whether there is a clear time scale separation.
As before, Ea=2kBT and �b=1. The initial velocities ẋ�0�
are sampled from the Maxwell distribution. Three ��t� for

�=0.08, 0.3, and 1.0 are averaged over 1000 independent
trajectories, and propagated up to their corresponding reac-
tion time scales �R�3, 4, and 10, respectively �Fig. 3�.

In case of time scale separation between t0�=0.01� and
�R�=3� for �=0.08, after a transient relaxation at short times,
��t� decays rapidly and reaches a plateau value �0, which
represents the fraction of crossings of the transition state that
are productive. In this case, the phenomenological rate con-
stant k is well defined as k=�0kTST where kTST is the transi-
tion state theory result �15�. However, in the case of time
scale overlap between t0�=1.8� and �R�=10� for �=1.0, ��t�
keeps decaying and does not reach a plateau on any time
scales faster than the reaction time scale �R. The absence of a
plateau value clearly demonstrates that there does not exist a
well-defined rate constant, indicating the breakdown of time
scale separation in Kramers-Grote-Hynes theories and the
emergence of dispersed kinetics and dynamic disorder in bio-
chemical reactions.

FIG. 4. Autocorrelation function C�m�= ����0����m�� / ���2� of
a simulated trajectory consisting of 10 000 consecutive turnovers.
���m�	��m�− ��� , � is the waiting time and m is the turnover in-
dex number. Ea=0.1kBT , �=1. The waiting time correlations span
over a broad range of time scales, resembling the memory effect
reported in Ref. �3�.

FIG. 2. �Color online� �a� Symmetric double well potential with
well frequency �a, barrier frequency �b, and barrier height Ea for
simulations of barrier crossing. �b� Waiting time distribution f�t�
�normalized by their first points� for three friction constants
�=0.08, 0.30 and 1.00, respectively. f�t� for small �=0.08 can be
fitted well by a mono-exponential decay �solid curve�. f�t� for large
�=1.00 displays multi-exponential decay, indicating dispersed
kinetics.

FIG. 3. �Color online� Time-dependent transmission coefficient
��t� evaluated by reactive flux formalism for �=0.08, 0.30, and
1.00, respectively. ��t� exhibits a plateau in �=0.08. However, due
to time scale overlap t0��R in �=1.00, ��t� keeps decaying and
does not reach a plateau before the reaction time scale. The absence
of a plateau indicates the lack of a well-defined rate constant, lead-
ing to dispersed kinetics and dynamic disorder.

KRAMERS MODEL WITH A POWER-LAW FRICTION … PHYSICAL REVIEW E 73, 010902�R� �2006�

RAPID COMMUNICATIONS

010902-3



We now discuss dynamic disorder unraveled in recent
single-enzyme turnover experiments: the autocorrelation
function of waiting times of a single enzyme turnover
trajectory decays over a broad range of times �10−3 to 10 s�
�3�. Although such a single-molecule “memory effect” is be-
yond the conventional reaction rate theory, it can be naturally
explained by our model when t0��R or t0��R. The consecu-
tive enzymatic turnover trajectory is simulated by first
starting a trajectory from the reactant well, and then
repetitively resetting x back to its initial Boltzmann distribu-
tion in the reactant well when x�t� reaches the bottom of the
product well. Such an instantaneous reset of x is to mimic
the cyclic enzymatic turnovers. Importantly, during the
resetting process, F�t� evolves continuously in time accord-
ing to Eqs. �2� and �3�, giving rise to the memory effect.
This is the picture of how slow conformational fluctuations
modulate the long time memory of enzymatic reaction. Fig-
ure 4 depicts the autocorrelation function C�m� of waiting
times ��m� from a simulated 10 000 turnovers trajectory,
C�m�= ����0����m�� / ���2�, as a function of m, the turnover
index number, and ���m�	��m�− ���. C�m�=0 should hold
for m�0 in the case of no rate fluctuation. The multi-
exponential decay of C�m� over three decades of time scales
is shown in Fig. 4, which resembles the experimental
results �3�.

The simulations above are performed for a low energy
barrier due to the limit of computation time. However, as we
have shown, the emergence of dispersed kinetics and dy-
namic disorder only depends on the overlap of time scales t0
and �R, which is also true for high barriers. In measurements
of protein conformational dynamics, t0 is determined to be
�0.9 sec for fluorescein antibody �4�, and �0.07 s for
flavin reductase �5�. Meanwhile, �R on which enzymatic re-
actions normally occur is around 10−4−10 sec �18�. This
time scale overlap between t0 and �R corroborates multi-
exponential kinetics and memory effect, as observed in
single enzyme turnover experiments �3�.

The incorporation of the experimentally determined
power-law friction kernel into the GLE description of barrier
crossing dynamics naturally accounts for multi-exponential
waiting time distribution and multi-time-scale waiting time
correlations. The observed dispersed kinetics and dynamic
disorder are not due to the fluctuation of barrier heights but
rather due to the conformational dynamics occurring on a
wide range of time scales at which the assumption of time
scale separation between conformational dynamics and enzy-
matic reactions breaks down.
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